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Renormalization Constants using Quark States in Fixed Gauge 
T. Bhattacharya", R. Guptaa, W. Lee" 

"Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 

We present a status report on our calculation of the renormalization constants for the quark bilinears in 
quenched O(a)  improved Wilson theory at /? = 6.4 using quark states in Landau gauge. 

1. INTRODUCTION 

One of the leading uncertainties in current 
lattice calculations comes from the renormaliza- 
tion constants necessary to relate the lattice cur- 
rents to those in some continuum renormaliza- 
tion scheme. Until recently, the most commonly 
used method for determining these was 1-loop 
perturbation theory. In the last few years a non- 
perturbative method based on axial and vector 
Ward identities has been developed [l]. This al- 
lows the determination of all scale invariant renor- 
malization constants, and all O(a)  improvement 
constants for bilinear operators. For the remain- 
ing bilinears and four fermion operators that arise 
in the weak effective Hamiltonian, the method 
of choice uses external quark states in Landau 
gauge [2]. This defines the renormalization con- 
stants in the RI or MOM scheme, in which the 
value of the renormalized operators is specified 
at  some fixed momentum for the external quarks. 

In this talk we present a status report of our 
calculations using quark states in Landau Gauge 
at /3 = 6.4. 

The calculation involves two quantities: the 
quark propagator, S(p) and the three point func- 
tions, cr 0, Q), 

S(P) = ( $ ( Y ) T ( O ) )  x eiPY (1) 
!I 

crO,  4) = (1Cl(v)3(o)r$(o):(~)) 
"Y 

7 (2) x eiP(-v) e- idz+Y) /2  

where is an element of the Clifford algebra, 1c, 
is the fermion field, and we only consider flavor 

non-singlet operators. In terms of these we define 

(3) 

(4) 

rr = s ( p ) - l ~ ~ ( ~ , o ) s ( p ) - l .  ( 5 )  
The RI scheme then corresponds to choosing a 
momentum p ,  (and mass m = 0 )  at  which the 
renormalized inverse propagator and the renor- 
malized truncated three point functions have 
their tree level values: 

rC, E z , p C  = I  ( 6 )  

r; E z - l z - l r m =  r l , m  1 (7) 

r; 3 Z;'Zrrr =r .  (8) 
These equations, thus, define the wave function 
renormalization constant, Z,, the mass renor- 
malization constant, Zm, and the renormalization 
constants for the bilinears, Zr.  The resulting 
renormalized quantities are then also the same 
those in the continuum RI scheme at  renormal- 
ization scale p2 = p 2 .  

The most common scheme in which phe- 
nomenological results are presented is the m, 
which can be obtained from the RI scheme re- 
sults by a perturbative calculation in the contin- 
uum. However, it is worth noting that the RI 
scheme does not respect the axial ward identities, 
and this breaking of the ward identity cannot be 
accounted for in the connection between RI and 

using perturbation theory [2]. Specifically, 
these identities require that 

(9) 



2 

at  q, = m = 0, where mR = 2-m is the renor- 
mdized maSs and P and A are the pseudoscalar 
and axial bilinears. Fortunately, the derivative 
terms in these equations, which contribute due to 
the Goldstone pole a t  zero quark mass arising out 
of chiral symmetry breaking, become irrelevant 
when the renormalization scale p is large com- 
pared to the scale of chiral symmetry breaking [2]. 
On the other hand lattice discretization errors be- 
come large for p a  larger than unity. Thus, the 
method relies on the existence of an intermediate 
window in which these two artifacts are small. 

2. DISCRETIZATION EFFECTS 

In the lattice regularization scheme operators 
receive power corrections which involve higher di- 
mension operators. This is a consequence of the 
hard cutoff, i .e. the lattice spacing a. In addition, 
because the RI scheme is defined in a fixed gauge, 
gaugeinvariant and gauge-dependent operators, 
in general, mix. Application of BRS symmetry 
shows [3] that, at O(a)  and q = 0,  the only correc- 
tions to $r$ are gauge invariant and of the form 
$(Wr + I?$)$, where W is the Dirac operator 
and this correction vanishes by the equation of 
motion, $w = W$ = 0. Such a correction term, 
therefore, does not affect the on-shell matrix ele- 
ments of these operators, but does contribute to 
the momentum space correlators in Eq. 2 as these 
involve contributions from points where the oper- 
ator and the fermion sources overlap. 

At O(a)  only 3 - m part of W contributes to 
the mixing; consequently, the scalar density and 
the vector current mix, as do the axial current 
and the tensor density. The pseudoscalar current 
receives only multiplicative corrections at  this or- 
der. At higher orders, the violation of rotational 
and Lorentz symmetries show up, and different 
components of V,, A,, and T,, mix amongst 
themselves. 

To take the O(a)  mixing into account, Eq. 8 is 
modified to 

- 4 -  

-e -b 

-b 

r; = q,lz& (11) 

r: rr + C ; ( r s - l +  P r y ,  

T r r f r '  = 0 ,  
where c; is determined by the requirement 

where r' = S, V ,  T ,  and A for I? = V ,  S ,  A,  and 
T respectively. Unfortunately, as stated above, 
there is no analogous condition to determine ck 
since 75S-I + S-'75 oc 75. An illustration of the 
magnitude of the mixing is given in Table 1 from 
which the cf. are determined. Similarly, a t  O(Q), 
the propagator gets corrections 

SI@) = (1 - 2acy'#)s(p)  - 2 4  , (14) 
where and ck are the gauge-variant and 
gaugeinvariant corrections respectively. Meth- 
ods to determine a combination of these coeffi- 
cients have been discussed in Ref. [4] and we do 
not repeat the discussion here. 

3. LATTICE PARAMETERS AND 
METHODOLOGY 

Our pilot calculation utilizes 60 lattices at ,B = 
6.4 which corresponds to a lattice scale of a-1 M 
3.85GeV [5] and a critical hopping parameter 
tcC M 0.135796 [6]. The quark propagators were 
inverted at seven values of tc = 0.1280, 0.1294, 
0.1308,0.1324,0.1334,0.1343, and 0.1348 using a 
clover coefficient value of csw = 1.526 [7]. Unless 
stated otherwise, we shall only consider momenta 
such that all components are less than n/4. 

The truncated three-point functions were cal- 
culated and projected on the Clifford basis. As 
shown in Tab. 1, the data, in addition to the ex- 
pected terms, shows O(a)  mixing (S +) K),  and 
the two O(a2) effects: mixing (V, t) G) and the 
difference between the terms parallel and perpen- 
dicular to the momentum. The latter effect is 
due to the violation of rotational symmetry. As 
mentioned in the previous section, we correct for 
the O(a)  mixings by determining the cf., but, a t  
pa N 1, the approximately 2% violation of rota- 
tional symmetry and 0.6% mixings due to higher 
order effects survive. 

To calculate the wave function renormalization, 
we Fourier transform the inverse propagator, 
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Table 1 
The various Clifford projections of the truncated 
3-point functions corresponding to the scalar 
and vector bilinears at K, = 0.1294 and pa = 
(0, 0,3,3) x 7r/16. 

operator projection value 
S 1 

7 3  

7 4  

VI 71 
v 2  7 2  

v 3  7 3  

1 

7 4  

v 4  7 4  

1 
7 7  

1.180(5) 
0.059(3) 
0.059(3) 
1.067( 5) 
1.067( 5) 
1.086 (3) 
0.019(2) 
0.006( 1) 
1.083(3) 

0.006(1) 
0.021 (2) 
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Figure 1. The improved (crosses) and unim- 
proved (circles) vector renormalization constants 
as a function of the renormalization scale. 

and calculate the derivative in Eq. 3 analytically: 

We expect large O(a2) discretization errors for 
the following reason. At tree level rc = 
(1/4) E,, cospp, which deviates from unity by 
N 15% at pa N 1. To correct for this artifact, we 
divide the calculated by this tree-level con- 
tribution, and use the resulting I?' in Eq. 7 to 
calculate 2+. Note that such a determination of 
2, contains residual O(a) errors stemming from 
the use of the uncorrected propagator. 

4. RESULTS 

In Fig. 1, we show the effect of improvement for 
the vector current, i .e.  removing the O(a) term by 
calculating c;. In the absence of discretization 
errors, the calculated ZV should be independent 
of the scale p except for non-perturbative terms. 
Non-perturbative terms are expected to fall off as 
l/p2 at  large p [2]. Instead the uncorrected data 
shows a linear rise, 2" changing by N 5% between 
0.8 < pa < 1.5. In contrast, the O(a) corrected 

quantity1 is constant over this range of pa. There 
is roughly 2 - 3% uncertainty in ZV coming from 
the variation between different Lorentz compo- 
nents and different combinations of momenta, in 
this range. 

Fig. 2 shows that the behavior of tensor renor- 
malization constant, Z,, is qualitatively similar: 
the much smaller linear rise of the unimproved 
2, for pa > 0.8 is removed by the improvement. 
Finally, we show the behavior of the axial vec- 
tor channel in Fig. 3. We do not observe any 
improvement in ZA and the data do not show a 
window in which it is independent of pa. 

5. DISCUSSIONS 

Since we have not finished the analysis, we end 
with a few qualitative statements. (i) The O(a) 
errors induced due to mixing with the equation of 
motion operators can be corrected for by calculat- 
ing c:. These ck can then be compared with those 

'arising from the use of the uncorrected propagator to 
define 2,. 
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evaluated using the axial Ward identity [l]. (ii) 
At = 6.4, the presence of non-perturbative cor- 
rections forces us to work at  p a  ,., 0.8 or higher 
to determine the renormalization constants. At 
these large momenta, the O(a2)  errors are only 
slightly smaller than the O(a) errors, and it is 
important to ascertain whether our attempts to 
correct the latter introduce unacceptably large 
O(a2)  errors. In particular, the correction terms 
in Eq. 12 involve the inverse propagator, and an 
O(a) improvement in the propagator used in this 
equation changes results at O(a2) .  The use of 
a suitably improved propagator would make the 
O(a)  correction term vanish in the chiral limit 
except for non-perturbative effects that fall off as 
l/p2. In practice, as already noted in Ref. [4], 
the bare inverse propagator has large O(ap2) cor- 
rections even in the chiral limit, and hence our 
improvement term does not vanish there. 

To summarize, O(a2)  corrections are large and, 
a t  present, uncontrolled. We are investigating 
ways to improve the calculation and the results 
of this study will be reported elsewhere. 
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Figure 2. The improved (crosses) and unim- 
proved (circles) tensor renormalization constants 
as a function of the renormalization scale. 
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Figure 3: The improved (crosses) and unim- 
proved (circles) axial vector renormalization con- 
stants as a function of the renormalization scale. 


